Group connectivity of graphs - A nonhomogeneous analogue of nowhere-zero flow properties

نویسندگان

  • François Jaeger
  • Nathan Linial
  • Charles Payan
  • Michael Tarsi
چکیده

Let G = (V, E) be a digraph and f a mapping from E into an Abelian group A. Associated with f is its boundary aS, a mapping from V to A, defined by af(x) = c Dleavingxf(e)-Ceenteringx f(e). We say that G is A-connected if for every b: V-, A with Cx E V b(x) = 0 there is an f: E -+ A (0) with b = af: This concept is closely related to the theory of nowhere-zero flows and is being studied here in light of that theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Connectivity: $\mathbb Z_4$ v. $\mathbb Z_2^2$

We answer a question on group connectivity suggested by Jaeger et al. [Group connectivity of graphs – A nonhomogeneous analogue of nowhere-zero flow properties, JCTB 1992]: we find that Z2-connectivity does not imply Z4-connectivity, neither vice versa. We use a computer to find the graphs certifying this and to verify their properties using nontrivial enumerative algorithm. While the graphs ar...

متن کامل

On Group Connectivity of Graphs

Tutte conjectured that every 4-edge-connected graph admits a nowhere-zero Z3-flow and Jaeger et al. [Group connectivity of graphs–a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182] further conjectured that every 5-edge-connected graph isZ3-connected.These two conjectures are in general open and few results are known so far. Aweaker version of ...

متن کامل

Group Connectivity and Group Colorings of Graphs — A Survey

In 1950s, Tutte introduced the theory of nowhere-zero flows as a tool to investigate the coloring problem of maps, together with his most fascinating conjectures on nowhere-zero flows. These have been extended by Jaeger et al. in 1992 to group connectivity, the nonhomogeneous form of nowhere-zero flows. Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and A∗ = A − ...

متن کامل

Forbidden graphs and group connectivity

Many researchers have devoted themselves to the study of nowhere-zero flows and group connectivity. Recently, Thomassen confirmed the weak 3-flow conjecture, which was further improved by Lovász, Thomassen, Wu and Zhang who proved that every 6-edge-connected graph is Z3-connected. However, Conjectures 1 and 2 are still open. Conjecture 2 implies Conjecture 1 by a result of Kochol that reduces C...

متن کامل

Nowhere-zero 3-flows in graphs admitting solvable arc-transitive groups of automorphisms

Tutte’s 3-flow conjecture asserts that every 4-edge-connected graph has a nowhere-zero 3-flow. In this note we prove that, if a regular graph of valency at least four admits a solvable group of automorphisms acting transitively on its vertex set and edge set, then it admits a nowhere-zero 3-flow.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 56  شماره 

صفحات  -

تاریخ انتشار 1992